Tom Fischer

Ph.D. Candidate in 2D / 3D Computer Vision and Machine Learning, specialized in object-level representation learning for detection, 9D object pose estimation, and continual learning, eager to contribute to and support your team.

Education

Ph.D. Candidate in Computer Science (expected graduation: late 2026)

Nuremberg, Germany University of Technology Nuremberg

04.2025 - present**

Supervised by Prof. Eddy Ilg in the CVMP Lab

Ph.D. Candidate in Computer Science

SAARBRÜCKEN, GERMANY

Saarland University 10.2023 – 04.2025

Supervised by Prof. Eddy Ilg in the CVMP Lab

M.Sc. in Computer Science GPA: 1.5/4.0 (best: 1.0, worst: 4.0)

SAARBRÜCKEN, GERMANY

 $SAARLAND\ UNIVERSITY$ 10.2020 – 05.2023

Thesis title: "Optical Flow with Explicit Diffusion"

B.Sc. in Cybersecurity Saarbrücken, Germany

 $Saarland\ University \\ 10.2016-10.2020$

Publications

Unified Category-Level Object Detection and Pose Estimation from RGB Images using 3D Prototypes,

<u>Tom Fischer</u>*, Xiaojie Zhang^{*}, Eddy Ilg. In *Proceedings of the 20th International Conference on Computer Vision* (ICCV)

iNeMo: Incremental Neural Mesh Models for Robust Class-Incremental Learning,

<u>Tom Fischer</u>, Yaoyao Liu, Artur Jesslen, Noor Ahmed, Prakhar Kaushik, Angtian Wang, Alan Yuille, Adam Kortylewski, Eddy Ilg. In *Proceedings of the 18th European Conference on Computer Vision* (ECCV)

Neuroexplicit Diffusion Models for Inpainting of Optical Flow Fields,

<u>Tom Fischer</u>, Pascal Peter, Joachim Weickert, Eddy Ilg. In *Proceedings of the 41st International Conference on Machine Learning* (ICML)

* Equal contribution.

Professional Experience

Research Intern Saarbrücken, Germany

Saarland University 05.2023 - 10.2023

Researching Neuroexplicit Diffusion Models under Prof. Eddy Ilg and Prof. Joachim Weickert

Working Student Karlsruhe, Germany

 $ATRUVIA\ AG$ 01.2022 – 04.2023

Programing Languages and Deep Learning Frameworks

Python, PyTorch, PyTorch3D, CUDA

Reviewing

ICCV (1x), CVPR (2x), AAAI (1x), ECCV (1x), TPAMI (3x)

Tutoring

Computer Vision, Master's Project, 3D Computer Vision, Cryptography

For author contribution statements and more detail about professional experience, refer to page 2.

Tom Fischer CV

Author Contribution Statements & Experience in Brief

Annotated Publications

1. Unified Category-Level Object Detection and Pose Estimation from RGB Images using 3D Prototypes [ICCV/25].

Problem: Detect objects and estimate **9D pose** (position, orientation, size) from single RGB image.

Method: Learn set of **3D** prototypes for 2D/3D correspondence estimation from feature matching with novel transformer-based architecture and size refinement.

My Role: Led method & implementation; designed training protocol & 9D inference pipeline; designed experiments; wrote major sections and coordinated submission.

Impact: SOTA on REAL275 (+22.9% avg across scale-agnostic metrics); more robust to image corruptions (-14% vs. -19-37% for baselines).

2. iNeMo: Incremental Neural Mesh Models for Robust Class-Incremental Learning [ECCV/24]. **Problem:** Learn **new object categories over time** without catastrophic forgetting, while still esimating **3D pose**.

Method: Uses expandable set of Neural Mesh Models plus regularization/distillation to preserve past knowledge; cameraview-aware exemplar selection and uncertainty-aware classification.

My Role: Led design, implementation, losses, and experiments; wrote major sections and coorinated submission.

Impact: Beats baselines by 2-6% in-domain and 6-50% OOD; first incremental pose-estimation framework; strong under heavy occlusions (60-80% occluded) outperforming baselines by up to 70%.

3. Neuroexplicit Diffusion Models for Inpainting of Optical Flow Fields [ICML/24].

Problem: Restores missing motion cues between frames to improve downstream vision tasks.

Method: Combines a network that predicts how motion should diffuse with a stable, explicit update step across multiple scales based on the theory of diffusion.

My Role: Conceived and implemented the full pipeline; designed all experiments and ablations; wrote major sections and coordinated submission.

Impact: New SOTA for filling in missing optical flow (pixel-wise motion): avg EPE gains vs. model-based +11-27%, and learning-based +42-47%; for KITTI, on-par with strongest baseline, while showing fewer outliers at low density.

WORKING EXPERIENCE

1. Research Intern at Saarland University (05.2023-10.2023)

Scope: Independent research on diffusion-based optical-flow inpainting distilled from my master's thesis. This work matured into our ICML 2024 publication.

Outcome: Evolved the thesis prototype into a publishable method; authored the manuscript and produced a fully reproducible codebase used for subsequent experiments.

2. Working Student at the Meaningful Conversational Intelligence Team at Atruvia AG (01.2022-04.2023)

Scope: Contributed to Text-to-Speech (TTS) R&D and Speech-to-Text (STT) production systems used in the banking context.

Outcome:

TTS: Delivered an end-to-end prototype (model architecture, inference path, serving design) that informed later product decisions.

Contribution: Selected and justified the model architecture; implemented the inference/serving pathway with a focus on latency and resource use; prepared integration points for internal platforms.

STT: Hardened and shipped the production service via Kubernetes and CI/CD; the system was put into production early in 2023.

Contribution: Managed day-to-day deployments on **Kubernetes** using the company **CI/CD** pipeline; improved rollout reliability and resolved deployment issues alongside platform/product teams.